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Abstract
There is strong experimental evidence for the existence of strange modes of
failure of microelectromechanical systems (MEMS) devices under
mechanical shock and impact. Such failures have not been explained with
conventional models of MEMS. These failures are characterized by overlaps
between moving microstructures and stationary electrodes, which cause
electrical shorts. This work presents modeling and simulation of MEMS
devices under the combination of shock loads and electrostatic actuation,
which sheds light on the influence of these forces on the pull-in instability.
Our results indicate that the reported strange failures can be attributed to
early dynamic pull-in instability. The results show that the combination of a
shock load and an electrostatic actuation makes the instability threshold
much lower than the threshold predicted, considering the effect of shock
alone or electrostatic actuation alone. In this work, a single-degree-of-
freedom model is utilized to investigate the effect of the shock–electrostatic
interaction on the response of MEMS devices. Then, a reduced-order model
is used to demonstrate the effect of this interaction on MEMS devices
employing cantilever and clamped–clamped microbeams. The results of the
reduced-order model are verified by comparing with finite-element
predictions. It is shown that the shock–electrostatic interaction can be used
to design smart MEMS switches triggered at a predetermined level of shock
and acceleration.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and background

The technology of microelectromechanical systems (MEMS)
is now rapidly maturing and many MEMS devices are
commercialized or ready for marketing. Currently, the
commercialization of MEMS is a major focus for engineers.
One of the most critical issues affecting the commercialization
of MEMS devices is their reliability under mechanical shock
and impact. Hence, there are increasing demands to improve
the design of MEMS to withstand shock loads. MEMS
can be exposed to shock during fabrication, deployment and

operation. Examples of such conditions are dynamic loading
in space applications and harsh environments in military
applications [1]. Further, a crucial criterion for automotive and
industrial applications is the survivability of portable devices
containing MEMS when dropped on hard surfaces [2], which
can induce significant shock loads. Such highly dynamic loads
may lead to various damage mechanisms, such as forming
of cracks and chipping of small fragments. In MEMS,
shock loads can cause microstructures, such as suspended
microbeams, to hit the stationary electrodes underneath them
causing stiction [3] and short circuit problems [4], and hence
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failure in the device’s function. Unlike failure in large devices,
failure in MEMS does not have to mean fracture of structures
due to high stresses; it can occur through stiction and electric
short circuits due to contacts between movable and stationary
electrodes.

MEMS devices typically employ capacitive sensing
and/or actuation, in which one plate or electrode is actuated
electrostatically and its motion is detected by capacitive
changes. There are numerous examples of MEMS devices,
which rely on electrostatic excitation and detection, such as
comb-drive actuators, resonant microsensors and RF MEMS
switches. In this method, the driving load is simply
the attractive force between two electrodes of a capacitor.
The electrostatic load has an upper limit beyond which the
mechanical restoring force of the structure can no longer resist
its opposing electrostatic force, thereby leading to the collapse
of the structure. This structural instability phenomenon is
known as pull-in. A key aim in the design of many MEMS
devices is to tune the electrostatic load away from the pull-in
instability in order to avoid failure of the devices.

Many studies have addressed the pull-in phenomenon and
presented tools to predict its occurrence so that designers
can avoid it. Some studies predicted pull-in based on
static analysis, which accounts for the dc electrostatic force
and the elastic resorting forces of the microstructure [5–7].
Others have, in addition, accounted for the transient motion
of microstructures, which lead to a dynamic pull-in. This
dynamic instability can take place below the predicted static
instability limit. The dynamic pull-in phenomenon was
reported and analyzed for switches actuated by a step voltage
[8, 9]. These studies indicate that the dynamic pull-in voltage
can be as low as 92% of the static pull-in voltage. In the
case of ac harmonic excitation, dynamic pull-in was found to
be below 50% of the static pull-in voltage [10]. These studies
raise the possibility that under the combination of electrostatic
and mechanical shock or impact load, dynamic pull-in may be
triggered at even lower values of the applied voltage.

The reliability of MEMS when exposed to shock and
impact has been a subject of increasing interest in recent
years. Béliveau et al [11] characterized experimentally the
response of commercial accelerometers due to shock loads and
observed some unexpected responses. Brown and Davis [12]
and Brown et al [13] subjected commercial accelerometers and
a pressure sensor to high-g tests. They reported peculiar modes
of failure under severe shock conditions and concluded that
improved dynamic modeling and characterization of MEMS
devices under shock load are needed. Li and Shemansky [14]
studied the motion of MEMS accelerometers during drop tests.
They used a single-degree-of-freedom (SDOF) model and a
continuous system beam model to account for the flexibility
of the structures and calculated their maximum deflection.
Li and Shemansky [14] observed through experimental drop
tests of the MEMS accelerometers overlap failures between
the moving parts and the stationary parts, which are caused
by the large deflection of the moving parts during testing.
Cunningham et al [15] investigated the effect of stress
concentration on the robustness of silicon microstructures
against shock.

Wagner et al [2] studied the response of a MEMS
accelerometer to a shock load induced by a drop test.

They used a linear beam theory, for rough estimations, and
finite element (FE) analysis to calculate the stress history
of the device during impact. Lim et al [16] studied the
effects of shock on a MEMS actuator using the FE software
ANSYS. Atwell et al [17] analyzed the response of a
piezoresistive accelerometer when subjected to high-g loading
using ANSYS. Jiang et al [18] simulated the response of
a high-g shock MEMS accelerometer employing cantilever
beams. Fan and Shaw [19] simulated the response of an
Analog Devices comb-drive accelerometer subjected to severe
dynamic shock loads using an FE model.

Srikar and Senturia [20] identified three key time scales
for the response of microstructures during impact: the acoustic
transit time, the time period of vibrations and the duration of
the applied shock load. They modeled microstructures using
an undamped SDOF model attached to an accelerating base.
Qian [21] investigated the reliability of RF MEMS switches
made of cantilever beams using an SDOF model. Fang et al
[22] investigated the response of a cantilever microbeam to a
half-sine shock pulse using a beam model. They utilized the
assumed modes method to calculate the displacement and
the bending stresses of the microbeam. Yee et al [23] and
Millet et al [24] analyzed the behavior of clamped–clamped
microbeams under shock loads. They represented the shock
force as a static point load applied at the middle of the
beam. For large-deflection cases, they solved the problem
approximately using Raleigh–Ritz technique employing one
trial function [25].

Tas et al [3] identified electrostatic forces and acceleration
forces during shock as two possible causes of the contact
of microstructures during the operation of MEMS devices,
which leads to stiction problem and failure of devices. Tas
et al [3] conducted a shock analysis on clamped–clamped and
cantilever microbeams; however they did not account for the
simultaneous effect of electrostatic forces and shock. Coster
et al [26] modeled the performance of an RF MEMS switch
actuated by electrostatic force and subjected to shock using an
SDOF system. They simulated the performance of the switch
to minimize the insertion loss.

Tanner et al [4] tested MEMS microengines against shock
pulses of various time durations and maximum amplitudes.
The microengines employ comb-drive actuators, which are
composed of folded springs, anchors and a series of comb
fingers actuated by electrostatic forces. Tanner et al [4]
observed a strange failure mode in the comb-drive actuators,
where the comb fingers contact the ground plane resulting in
electrical shorts. They calculated the maximum deflection of
a comb finger at the shock level at which this strange failure
mode was observed. They found that the force from the shock
is much smaller than the force needed to bend the comb finger
to touch the ground.

We note from the above review that there are many
reported experimental observations of overlap failures between
stationary and movable electrodes. Few theoretical studies
have been presented to explain these failures. However,
the majority of them has accounted for the effect of shock
force alone or the effect of electrostatic force alone, with the
exception of the work of Coster et al [26], which focused
on the insertion loss. The literature lacks theoretical studies
that address the simultaneous effect of mechanical shock and
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Figure 1. A single-degree-of-freedom model of a MEMS device.

electrostatic force on the stability of MEMS structures and
devices. There is a need for more for robust and accurate
models to explain many of the strange failure modes in MEMS
microstructures, which were reported in the literature. These
models aim to allow designers to simulate the response of their
prototypes in an early stage of design prior to fabrication, and
hence lead to more reliable MEMS devices.

In this paper, we use a single-degree-of-freedom model
to represent electrostatically actuated MEMS devices in
general. We investigate the response of the devices and
draw conclusions about the shock–electrostatic interaction.
Then, we use a reduced-order model, based on a continuous
beam model, to investigate the response of MEMS devices
employing cantilever and clamped–clamped beams. We
verify the reduced-order model results by comparing to finite-
element predictions. Finally, we show that this phenomenon
can be used to design smart MEMS switches or g-sensors
triggered at a predetermined level of shock and acceleration.

2. Single-degree-of-freedom model

A single-degree-of-freedom model depicted in figure 1 is
utilized to represent a MEMS device employing electrostatic
actuation and subjected to a shock force Fsh = F0g(t), where
F0 is the shock amplitude and g(t) is the shock pulse shape.
The device has a movable microstructure of mass m, which
forms one side of a variable capacitor. A viscous damper of
coefficient c is used to model energy dissipation and a spring
of coefficient k is used to model the effective stiffness of the
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Figure 2. A time history for the response of a microstructure when actuated by (a) a shock force and no electrostatic force and (b) an
electrostatic force and no shock force.

microstructure, which is due to the elastic restoring force and
residual stresses. The equation of motion of the microstructure
can be written as

mẍ + cẋ + kx = εAV 2
dc

2(d − x)2
+ F0g(t), (1)

where x is the microstructure deflection, Vdc is the dc
polarization voltage, A is the electrode area on the
microstructure, d is the capacitor gap width and ε is the
dielectric constant of the gap medium. Here, a complete
overlapping is assumed between the two electrodes of
the capacitor. The shock force is assumed to be a half-sine
shock pulse, which is expressed as

g(t) = sin
(π

T
t
)

u(t) + sin
[π

T
(t − T )

]
u(t − T ), (2)

where T is the shock duration and u(t) is the unit step function.
Equation (1) is integrated with time to determine the response
of the microstructure.

We begin by analyzing the response of a clamped–
clamped microbeam employed as a resonant sensor [5], with
length L = 510 µm, thickness h = 1.5 µm, width b =
100 µm and gap width d = 1.18 µm. To simplify the
analysis, we assume no residual stresses on the microbeam.
Using a reduced-order model [27], the pull-in voltage of this
microbeam is found to be Vdc ≈ 4.4 V. We use this value
in the equation of the pull-in voltage for a simple spring-mass
system [25] to extract the stiffness constant k. Another method
of determining the stiffness is described in [28] and it leads to
a similar result. The details of the development of the reduced-
order model for the clamped–clamped beam are given in the
following section. We assume a damping ratio ξ = 0.05,
which is related to the damping coefficient c as c = 2mω1ξ,

where ω1 is the natural frequency of the microstructure.
Next, we examine the time response of the microstructure

x(t) normalized to the gap width d for various values of the
dc voltage and the shock amplitude. In figure 2(a), we set
Vdc = 0 and assume a shock amplitude of 1000 g (g refers
to the gravitational constant) with duration T = 1.0 ms.
As expected, the steady-state value reaches the equilibrium
position of zero displacement. Because the natural period
of the microstructure is very small (0.02 ms) compared to
the duration of the shock load (typically, it ranges from
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Figure 3. A time history for the response of the microstructure showing dynamic pull-in. In both of these cases, the applied voltage is less
than the pull-in voltage of 4.4V, but the response is unstable due to the mechanical shock. (a) Vdc = 4.0 V, shock amplitude = 1000 g and
(b) Vdc = 2.0 V, shock amplitude = 10 000 g.

0.2–1.0 ms for drop table test [29]), we note from figure 2(a)
that the microstructure experiences the shock force as a quasi-
static force that stays for some time and is then removed.
Hence, we note that the response of the microstructure takes a
similar shape to the shock pulse profile (quasi-static response).
A similar conclusion can be stated for many MEMS devices,
as pointed out by Srikar and Senturia [20].

Figure 2(b) shows the time history of the response when
Vdc = 4.0 V, and no shock force is applied. We note that the
steady-state amplitude is near x(t)/d = 0.175. We recall here
that the instability limit of a spring-mass system according
to the static analysis is near x(t)/d = 0.33 and according to
the dynamic analysis, i.e. accounting for the transients at low
damping, is 92% of the static limit, which is x(t)/d = 0.3. This
corresponds to a voltage load of Vdc = 4.05 V.

Figure 3(a) shows the time history of the response when
Vdc = 4.0 V, and a shock load is applied of amplitude 1000 g. It
is clear that the system undergoes dynamic pull-in instability,
where the electrode hits the substrate. This instability is
characterized by the slope of the displacement approaching
infinity. Figure 3(b) shows the time history of the response
when Vdc = 2.0 V and a shock load is applied of amplitude
10 000 g. Surprisingly, the system also undergoes dynamic
pull-in instability, even though the applied voltage of 2.0 V
is less than half the static pull-in voltage of 4.4 V or the
‘dynamic’ pull-in voltage of 4.05 V, as explained above. In
figure 4, we show the response of the system when Vdc =
2.0 V and no shock force is applied. Clearly, the steady-state
response is around x(t)/d = 0.03, which is very far from the
pull-in instability limit x(t)/d = 0.3.

Figures 3(b) and 4 indicate very interesting and important
results. They show that in the presence of electrostatic forces,
a stable system (for example, figure 4), which operates far
from the instability threshold, can go unstable under the effect
of a shock load that is even moderate in magnitude (in this
case, the amplitude ranges from 1000 g–10 000 g). Therefore,
in the design of a MEMS device, both the electrostatic forces
and the shock forces have to be taken into account, even if the
microstructure undergoes small deflection and operates within
a small range of the electrostatic force, to avoid this dynamic
pull-in instability. This dynamic instability has been reported
by Tanner et al [4] as a strange mode of failure, which is
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Figure 4. A time history of the response when Vdc = 2.0 V and no
shock force is applied.
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Figure 5. Schematic illustrating that the interaction between a
shock load and the nonlinear electrostatic force can lead to the early
failure of a MEMS device.

characterized by contacts and overlaps among the fingers and
electrodes of the parallel-plate capacitors. Figure 5 illustrates
the concept of this section.

In figure 6, we show a plot of the pull-in voltage of the
microstructure against the shock amplitude of a half-sine pulse
of duration 1.0 ms (solid) and 0.1 ms (dashed). We note from
the figure that the duration of the shock has a slight effect. This
is due to the fact that the microstructure does not experience
the shock force as shock, as explained before, but rather as
a static load. Hence, the structure does not experience any
significant difference in the transient response due to those
shock loads. As seen from the figure, at a large shock load the
microstructure exhibits pull-in instability even if it is biased
by a small value of voltage. For example, if the microbeam is
biased by a voltage exceeding 1.5 V, it will pull-in at a shock
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Figure 6. A plot of the pull-in voltage of a MEMS microstructure
against the shock amplitude of a half-sine pulse of duration 1.0 ms
(solid) and 0.1 ms (dashed).

value equal to or greater than 6000 g. It is noted from the
figure that at low values of shock, the pull-in voltage of the
short-duration shock is lower than that of the higher duration.
This can be qualitatively understood by noting figures 2(a) and
(b). Figure 2(a) shows that the response to a shock load of
T = 1 ms reaches its peak at t = 0.5 ms. On the other hand,
we note from figure 2(b) that at t = 0.5 ms, the response of the
structure to the electrostatic force alone reaches a steady state
and it is almost static (no transient behavior). In the case of the
shock load with T = 0.1 ms, the peak of the response occurs at
t = 0.05 ms. We can see from figure 2(b) that the deflection at
t = 0.05 ms is large, and hence the transient dynamics due to
the electrostatic force will be a factor in this case. At higher
values of shock loads, the transient effect of the electrostatic
force becomes negligible compared to the dominant effect of
shock loads.

The maximum shock amplitude in figure 6 is equal to
11 000 g. Near such high values of shock, the response of
the system due to shock load alone becomes very large and
the displacement almost reaches the substrate, as indicated
in figure 7(a). The electrostatic force effect becomes very
small; however, it is sufficient to cause a contact with the
substrate. This is further clarified in figure 7(b), which shows

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

Shock amplitude (g)

x M
ax

/d

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

DC Voltage (V)

x M
ax

/d

(a) (b) 

Figure 7. The maximum defection of the microstructure when actuated by (a) a shock force and no electrostatic force and (b) an
electrostatic force and no shock force.

the maximum overshoot value of the displacement due to the
actuation of the electrostatic force alone.

To better understand the influence of the simultaneous
effect of the mechanical shock and the electrostatic forces
on the behavior of electrostatically actuated MEMS devices,
we introduce a nondimensional number β that measures
the relative strength of the shock force with respect to the
electrostatic force at pull-in. This corresponds to x = d/3 for
microstructures with linear stiffness. Hence, β can be defined
as

β = Fsh

Felect-pull
= 8Fshd

2

9εAVpull
, (3)

where Vpull is calculated according to the model of equation (1).
Figure 8 shows calculated values of β corresponding to the
data of figure 6. We note that when β is small and less than
one, corresponding to shock values below 2000 g, the shock
force is small compared to the electrostatic force. Hence,
the shock force has a smaller effect in this regime, and for
very small values of β, it has a negligible effect. This is
characterized in figure 6 by a nearly flat curve. For this small
range of acceleration, it is safe to neglect its effect. However,
when β exceeds unity up to 10, which corresponds to shock
values from 2000 g to 5000 g, the shock and electrostatic
forces become of the same order of magnitude. In this regime,
both forces have a considerable influence on the behavior.
This regime is characterized in figure 6 by a straight line with
almost a constant slope. For larger values of β, the shock force
becomes much larger than the electrostatic force. Hence, at
these values the shock effect dominates over the electrostatic
force effect. For β exceeding one hundreds, it is almost safe to
neglect the effect of the electrostatic force on the response.

3. Beam model

3.1. Problem formulation

The developed SDOF model is helpful to gain qualitative
understanding and rough quantitative estimation for the
response of a wide range of electrostatically actuated
microstructures of regular or irregular shapes. However,
for quantitative data and accurate design guidelines, more
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Figure 8.Variation of the parameter β for various values of shock amplitude.
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Figure 9. An electrostatically actuated microbeam.

rigorous models are needed to address the specific details
of the microstructure. Reduced-order models can be very
efficient to achieve this purpose [27, 30]. In this section, we
investigate the behavior of cantilever and clamped–clamped
microbeams. These microbeams are widely used in MEMS,
such as in microswitches and resonant sensors.

In what follows, a reduced-order model is developed to
analyze the response of a microbeam to a shock load and
electrostatic force. The derivation is general for microbeams
with any boundary conditions. We consider a microbeam, for
example, figure 9, actuated by an electrostatic force Vdc and
subject to a half-sine shock pulse of amplitude per unit length
F0 and shape g(t). The microbeam is subject to a viscous
damping, which can be due to squeeze-film damping. We
approximate this effect by an equivalent damping coefficient
c̃ per unit length. The equation of motion that governs the
transverse deflection w(x, t) of the microbeam is written as

EI
∂4w

∂x4
+ ρbh

∂2w

∂t2
+ c̃

∂w

∂t
=

[
Ebh

2L

∫ l

0

(
∂w

∂x

)2

dx + Ñ

]
∂2w

∂x2

+
εbV 2

dc

2(d − w)2
+ F0g(t), (4)

where x is the position along the microbeam length, I is the
moment of inertia of the cross section, E is Young’s modulus,
t is time, ρ is the material density, h and b are the microbeam
thickness and width, respectively, d is the gap width and ε is
the dielectric constant of the gap medium. The parameter Ñ

corresponds to a tensile or compressive axial load, depending
on whether it is positive or negative. The integral term
in equation (4) represents the mid-plane stretching of the
microbeam in the case of immovable boundary conditions.
For the case of cantilever microbeams, this term is set to zero.

For convenience, we introduce the nondimensional
variables (denoted by hats)

x̂ = x

L
, t̂ = t

t̃
, ŵ = w

d
, (5)

where t̃ is a time scale, as defined below. Substituting
equation (5) into equation (4) and dropping the hats, we obtain

∂4w

∂x4
+

∂2w

∂t2
+ c

∂w

∂t
=

[
α1

∫ 1

0

(
∂w

∂x

)2

dx + N

]
∂2w

∂x2

+
α2V

2
dc

(1 − w)2
+ α3g(t). (6)

The nondimensional parameters appearing in equation (6) are

α1 = 6

(
d

h

)2

, α2 = 6εL4

Eh3d3
, c = 12ĉL4

Et̃bh3
,

(7)

α3 = 12L4F0

Ebdh3
, N = 12ÑL2

Ebh3
, t̃ =

√
ρbhL4

EI
.

The parameter α3 represents a shock amplification factor.
According to this parameter, the shock effect increases
significantly as the beam length increases and its thickness
decreases.

Next, we generate a reduced-order model by discretizing
equation (6) into a finite-degree-of-freedom system consisting
of ordinary-differential equations in time. The undamped
linear mode shapes of the straight (unactuated) microbeam
may be used as basis functions in the Galerkin procedure. To
this end, we express the deflection as

w(x, t) =
M∑
i=1

ui(t)φi(x), (8)

where ui(t) is the ith generalized coordinate and φi(x) is the
ith linear undamped mode shape of the straight microbeam.
Multiplying equation (6) by φi(x) (1 − w)2, substituting
equation (8) into the resulting equation and integrating the
outcome from x = 0 to 1 yields the reduced-order model.
The response of the microbeam to a shock load can be
simulated by integrating the ordinary-differential equations of
the reduced-order model in time. In a previous study [27],
it has been shown that using four or more modes can be
sufficient to capture the dynamic response of electrostatically
actuated microstructures. Hence, in analyzing the response of
a microbeam to mechanical shock and electrostatic force, it
is anticipated that the required number of modes should be at
least four.
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Figure 10. An electrostatically actuated cantilever microbeam
subjected to mechanical shock.

3.2. Response of MEMS devices employing cantilever
microbeams

Next, we analyze the dynamic response of MEMS devices
employing cantilever microbeams to mechanical shock
(figure 10). This problem has been the focus of many recent
studies, for example, Coster et al [26], Qian [21] and Tas et al
[3]. Cantilever microbeams do not suffer from mid-plane
stretching (the integral term in equation (3) is zero). As a case
study, we study the response of a silicon cantilever beam with
L = 100 µm, h = 0.1 µm, b = 10 µm and d = 2.0 µm. We
assume the microbeam to be placed under near-vacuum
conditions (no damping), which represents a worst-case
scenario. The pull-in voltage of this microbeam based on
a static analysis [7, 27] is 0.652 V, and accounting for the
transient effect it is 0.6 V.
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Figure 11. The normalized maximum amplitude of a cantilever microbeam subjected to a 400 g shock pulse of T = 1.0 ms versus the
nondimensional time. (a) Vdc = 0.36 V, (b) Vdc = 0.37 V.
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Figure 12. The normalized maximum amplitude of a cantilever microbeam subjected to a 400 g shock pulse of T = 0.1 ms versus the
nondimensional time. (a) Vdc = 0.27 V, (b) Vdc = 0.28 V.

Figure 11(a) shows the time response of the microbeam
when actuated by a voltage load Vdc = 0.36 V and subjected to
a mechanical shock pulse of amplitude 400 g and duration
1.0 ms. Here, Wmax/d is the maximum deflection of
the microbeam at x = L normalized to d, and t is the
nondimensional time, as defined in (5). It turns out that the
first natural period of the microbeam is much smaller than
the pulse duration, and hence the microbeam experiences the
mechanical shock as a quasi-static load. We note that the
microbeam undergoes large deflection close to the substrate;
still the microbeam does not collapse. After the shock, it
oscillates around the static equilibrium position due to the
effect of the electrostatic force. In other words, the mechanical
shock has no permanent effect on the device in this case. In
figure 11(b), the dc bias is set to Vdc = 0.37 V. It is clear
from the figure that the microbeam undergoes dynamic pull-in
and it hits the substrate. This can result in short circuit and
stiction problems, and in the case of RF MEMS switches, it
can lead to unexpected circuit closing. Figure 12(a) shows the
response of the same microbeam when actuated by a voltage
load Vdc = 0.27 V and subjected to a 400 g shock pulse of
duration 0.1 ms, which is close to the natural period of the
microbeam. Hence, the microbeam experiences the shock
load as a dynamic load. We also note here that the microbeam
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Figure 13. (a) Cantilever beam response to shock pulse of T = 1.0 ms generated using a dynamic FE model (solid), a reduced-order model
employing four (triangles), six (stars) and seven modes (dash-circles). (b) The corresponding β values.
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Figure 14. (a) Cantilever beam response to shock of T = 0.1 ms generated using a dynamic FE model (solid), a reduced-order model
employing four (triangles), six (stars) and seven modes (dash-circles). (b) The corresponding β values.

undergoes large deflection close to the substrate and does not
collapse. However, it oscillates with relatively large amplitude
motion after the end of the shock pulse. In figure 12(b), the
dc bias is set to Vdc = 0.28 V, in which case the microbeam
undergoes dynamic pull-in hitting the substrate.

To help validate the above predictions, comparisons
are provided in the following with results obtained using
the FE software ANSYS [31]. We use the coupled
electrostatic-structural element TRANS126 elements to model
the electrostatic coupling between the beam and a ground
electrode. This element is a two-node element which has
one structural degree of freedom and an electrical potential
between the nodes. One end of each element is held fixed while
the other is coupled to a structural node in the beam. A voltage
difference is applied across the TRANS126 element, which
creates an attractive force that is resisted by the stiffness of the
beam. The shock is applied to all the nodes on the microbeam
via the ACEL command using discrete data points during a
transient dynamic analysis. Figure 13(a) shows comparisons
between the results of the reduced-order model employing
four modes (triangles), six modes (stars), seven modes (dash-
circles) and the FE model results (solid). We note that as the
effect of the electrostatic force decreases for high values of
shock load, a larger number of modes is needed to capture
the sensitivity in the variation of voltage load. Hence, for
low-values of shock loads, using four modes yields acceptable

accuracy. For larger values of shock, seven modes yield the
most accurate results in agreement with the FE results.

Similar to the SDOF model analysis, we calculate
the parameter β to help understand the influence of
the simultaneous effect of the mechanical shock and the
electrostatic forces on the behavior. Here, the electrostatic
force is calculated at Wmax(L) = d/3. Figure 13(b) shows
calculated values of β corresponding to the data of figure 13(a).
It can be noted that the shock force significantly dominates
the electrostatic force for β greater than 10 where the shock
amplitude is 600 g. Figure 14 shows similar results for the case
of T = 0.1 ms. Comparing this figure to figure 13, it is clear that
the dynamic amplification of the shock lowers significantly the
instability threshold. For example, the microbeam exhibits
pull-in for a 600 g shock at a voltage of 0.22 V for a 1.0 ms
pulse and at 0.06 V for a 0.1 ms pulse.

It is common in analyzing shock problems in MEMS to
model the behavior of microstructures assuming the shock as
static forces and solving the mechanical behavior problem as
a static problem. This is especially true for microstructures of
high natural frequencies that experience the shock force as a
quasi-static force. However, for shock–electrostatic problems,
this assumption can lead to erroneous predictions since the
pull-in instability here is a dynamic instability. This is further
explained in figure 15, which shows a comparison between
the results of the dynamic model of the electrostatic–shock

2470



Response of microstructures under mechanical shock and electrostatic forces

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Shock amplitude (g)

Pu
ll-

in
 v

ol
ta

ge
 (

V
)

Figure 15. A comparison between the results of the dynamic model
of the electrostatic–shock problem (solid) and those of the static
model assuming static electrostatic and shock forces (stars).

problem (solid) to those of the static model assuming static
electrostatic and shock forces (stars). Both sets of results are
obtained using the reduced-order model. It is clear that the
static assumption does not yield correct results.

3.3. Response of MEMS devices employing
clamped–clamped microbeams

Next, we analyze the dynamic response of MEMS devices
employing clamped–clamped microbeams to mechanical
shock. This problem has been the subject of recent studies,
for example, Tas et al, [3], Yee et al [23] and Millet et al
[24]. Clamped–clamped microbeams represent an example
of microstructures suffering from the geometric nonlinearity
mid-plane stretching. As a case study, we study the response
of a silicon clamped–clamped beam with L = 900 µm, h =
1.5 µm, b = 100 µm, and d = 2.0 µm. We assume the
microbeam to be placed under near-vacuum conditions (no
damping), which represents a worst-case scenario. The pull-
in voltage of this microbeam based on a static analysis [7, 27]
is 3.38 V, and accounting for the transient effect, it is 3.11 V.
By calculating the natural frequency of this microbeam, we
found that its fundamental natural period is close to 0.1 ms.
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Figure 16. (a) Clamped–clamped beam response to shock of T = 1.0 ms generated using a dynamic FE model (solid-triangle), a
reduced-order model employing four (dashed) and six (solid-circles) modes. (b) The corresponding β values.

Hence, the microbeam experiences the mechanical shock load
of T = 1.0 ms as quasi-static load and of T = 0.1 ms as dynamic
load.

Because of the symmetry of the load and boundary
conditions of the microbeam, the symmetric modes are the
only modes that participate in the response. Hence, only those
are used in the reduced-order model. Figure 16(a) shows
comparisons between the results of the reduced-order model
employing four modes (dashed), six modes (solid-circle) and
the FE model results (solid-triangle). It is clear that using
six modes are sufficient to capture the dynamic behavior. It
should be mentioned that we were unable to use more than
six symmetric modes in our Mathmatica code [32] because
of convergence problems in the numerical integration of the
higher order mode shapes. Also, beyond a shock value of
2400 g, it is difficult to distinguish a sharp and sudden
transition in the response as a sign of dynamic pull-in in both
the FE model and the reduced-order model. This is because,
as indicated from figure 16(b), the shock force becomes
significantly dominant over the electrostatic force. Figure 17
shows similar results for the case of T = 0.1 ms.

With regard to treating the shock–electrostatic problem
as a static problem assuming static forces, the conclusion of
the case of cantilever microbeams is still held for clamped–
clamped microbeams. This is illustrated in figure 18, which
shows a comparison between the results of the dynamic model
of the electrostatic–shock problem (solid) to those of the
static model assuming static electrostatic and shock forces
(stars). Clearly, the static assumption is not adequate to capture
accurately the pull-in instability location.

4. A smart MEMS switch triggered by acceleration

A primary aim of the present work is to help mitigate the
adverse effects of combined shock and electrostatic forces.
However, one can also take advantage of these combined
effects in the development of new devices. One example of this
is a smart MEMS switch, which is triggered by acceleration.
The device, shown in figure 19, consists of an active switch
where the applied dc voltage is used to set the acceleration level
where instability occurs. One could tune the dc voltage on the
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Figure 17. (a) Clamped–clamped beam response to shock of T = 0.1 ms generated using a dynamic FE model (triangle), a reduced-order
model employing four (dashed) and six (circles) modes. (b) The corresponding β values.
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Figure 18. A comparison between the results of the dynamic model
of the electrostatic–shock problem (solid) and those of the static
model assuming static electrostatic and shock forces (stars).
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Figure 19. Schematic for a packaged MEMS switch being dropped
from height h to the ground. Such an impact induces shock force on
the package, which is transferred to the microstructure in the form
of an acceleration pulse.

microbeam so that it collapses when the device experiences
acceleration beyond a specific threshold. Below the threshold,
the beam deflects only slightly due to acceleration. If the
acceleration exceeds a specific threshold, the microbeam snaps
down to close an electric circuit as a switch. This switching
mechanism is very desirable in many applications, such as to
trigger airbags in vehicles and to protect portable devices upon
impact [33].

The principle of operation of the new switch can be further
illustrated by considering any of figures 6, 13(a), 14(a), 16(a)
and 17(a). For any point of acceleration and voltage to the
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Figure 20. A plot of the actuation threshold of the smart switch
against the shock amplitude of a half-sine pulse of duration 1.0 ms.
For any point of shock amplitude and voltage to the right of the
curve, the switch is on; otherwise, the switch is off.

right of a shock-voltage curve, the switch is on; otherwise, the
switch is off. For example, in figure 13(a), if the microbeam
is biased by 0.2 V and is subjected to an acceleration of 600 g,
it will collapse and the switch will be on. The switch can be
tuned to operate at any desired acceleration level (ranging from
zero to hundreds of thousands of g’s) by modifying its design
parameters, such as the structure shape and its dimensions.

Figures 6, 13(a), 14(a), 16(a) and 17(a) demonstrate
tunable switches with operation ranges of hundreds to
thousands of g’s. Some applications however require that
the switch be triggered at a lower acceleration range. In these
applications, the switch and its package may not be subjected
to shock force, which induces large values of acceleration.
For example, to protect portable devices, such as a laptop
computer, when falling the switch has to function once it feels
free falling, which induces acceleration, equal to 1 g. If the
laptop hits the ground, it is too late to protect the hard drive.
So it is desired that the switch be triggered at a level of unity g
before the impact to protect the hard drive during the impact.

To lower the operation range of the switch, the geometry
of the cantilever microbeam of figure 13 can be modified. We
choose the microbeam to have L = 900 µm, h = 1.0 µm,
b = 100 µm and d = 2.0 µm. Figure 20 depicts the dc
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Figure 21. The time response of the cantilever microbeam to a
half-sine shock pulse of amplitude 4 g and dc voltage 0.17 V
showing the switch in the on state.

voltage threshold versus the shock amplitude for a half-sine
shock pulse of duration equal to 1.0 ms. For any point of
shock amplitude and voltage to the right of the curve, the
microbeam hits the substrate and the switch is on; otherwise,
the microbeam does not collapse and the switch is off. We note
here that the operation range of the switch has been lowered
significantly to a maximum of 12 g. This means that the switch
is more sensitive to variation in acceleration in this low range.

Next, we demonstrate the sensitivity of this switch to
variation in the dc voltage and the acceleration level. As
an example, we suppose that the desired threshold for the
switch closing is at an acceleration level equal to 4 g or larger.
According to figure 20, we need to apply a dc voltage of
0.17 V on the microbeam to have a pull-in at 4 g. Figure 21
shows the time response of the microbeam when biased by
0.17 V and subjected to a shock pulse of amplitude 4 g. It is
clear that the microbeam hits the substrate (close the switch)
when Wmax/d = 1. Figure 22(a) shows a similar plot, but by
adjusting the voltage to 0.16 V. It is clear that the switch does
not close in this case (remains in the off position). Figure 22(b)
shows a plot similar to figure 21, but here the level of
acceleration has been lowered to 3 g. We can also note
here that the switch does not close and remains in the off
position. We conclude from figures 21 and 22 that this switch
can be tuned to close accurately at the desired acceleration
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Figure 22. The time response of the cantilever microbeam showing the switch in the off state. (a) Pulse amplitude is 3 g and dc voltage
0.17 V, (b) pulse amplitude is 4 g and dc voltage 0.16 V.

level. Below the desired threshold of acceleration, the switch
does not close (figure 22(a)). Also, lowering the voltage bias
below the required threshold makes the switch not closing
(figure 22(b)).

5. Summary and conclusions

We presented modeling and simulation of MEMS devices
under the combination of shock loads and electrostatic
actuation. Our results indicate that the reported strange failures
of electrostatically actuated microstructures under shock load
can be attributed to early dynamic pull-in instability. The
results show that the combination of a shock load and an
electrostatic actuation makes the instability threshold much
lower than the threshold predicted considering the effect of
shock alone or electrostatic actuation alone.

We utilized a single-degree-of-freedom model to
investigate the effect of the shock–electrostatic interaction on
response of MEMS devices with microstructures of general
shapes. We then used a reduced-order model to demonstrate
the effect of this interaction on MEMS devices employing
cantilever and clamped–clamped microbeams and verified
the results by comparing to finite-element predictions. We
showed that the shock–electrostatic interaction could be used
to design smart MEMS switches triggered at a predetermined
level of shock and acceleration. We investigated the potential
application of this switch for low-g and high-g applications
and demonstrated its sensitivity for variations in acceleration
and dc voltage.

It is concluded that three zones characterizing shock–
electrostatic problems can be distinguished based on the
magnitude of the shock pulse compared to the electrostatic
force at pull-in (the parameter β). The first zone is for very
small values of β, approximately less than 0.2. In this regime,
the shock force has a negligible or minor effect on pull-in.
The second zone is for large values of β exceeding 50. In
this regime, the electrostatic force has a minor to negligible
effect on the deflection of the microstructure. The third zone
lies between the previous two. It is the largest and the most
dangerous zone since both the electrostatic and mechanical
shock forces have considerable effect on the response. In this
region, it is unsafe to neglect the effect of either force.
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It has been demonstrated that modeling the electrostatic–
shock interaction problem as a static problem by
approximating the shock force as a quasi-static force can lead
to erroneous results. It is observed that the computational cost
of simulation increases with increasing values of β. This is
manifested through the requirement of larger number of modes
or basis functions to be used in the reduced-order model and
finer mesh and more elements in the finite-element models.
This is attributed to the fact that it becomes difficult to capture
the sensitivity of the response to changing the dc voltage for
shock-dominated regimes.
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